Preprints
 H. Ammari, B. Fitzpatrick, H. Lee, S. Yu and H. Zhang, Doublenegative acoustic metamaterials, preprint, http://arxiv.org/pdf/1709.08177
 H. Ammari, H. Lee and H. Zhang, High frequency homogenization of bubbly crystals, preprint, http://arxiv.org/pdf/1708.07955
 H. Ammari, B. Fitzpatrick, D. Gontier,
H. Lee and H. Zhang, Minnaert resonances for
acoustic waves in bubbly media, preprint, http://arxiv.org/abs/1603.03982
Book

 H. Ammari,
H. Kang, and H. Lee, Layer
potential techniques in spectral analysis, 

 H. Ammari,
E. Bretin, J. Garnier, H. Kang, H. Lee, and A. Wahab, Mathematical Methods in Elasticity Imaging 
Papers
[41] H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Subwavelength focusing of acoustic waves in bubbly media, to appear in Proc. R. Soc. A
[40] X. Li, H. Lee and Y. Wang, Asymptotic Analysis of the Narrow Escape Problem in Dendritic Spine Shaped Domain: Three Dimension, J. Phys. A:Math. Theor. 50(2017) 325203(14pp).
[39] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu and H. Zhang, Subwavelength phononic bandgap opening in bubbly media, J. Diff. Eq., 263(2017), 56105629.
[38] H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, A mathematical and numerical framework for bubble metascreens, SIAM Journal on Applied Mathematics, 77(5) (2017), pp. 1827–1850.
[37] T. Feng, H. Kang, and H. Lee, Construction of GPTvanishing structures using shape derivative, J Comp Math, 35(5)(2017), 569585.
[36] H. Kang, H. Lee and S. Sakaguchi, An overdetermined boundary value problem arising from neutrally coated inclusions in three dimensions, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Vol. XVI (2016), 11931208
[35] H. Lee and J. Lee, Array dependence of effective parameters of dilute periodic elastic composite, Contemporary Mathematics 660(2016), 5971
[34] H. Kang,
K. Kim, H. Lee and J. Shin, Spectral properties of the NeumannPoincar\'e operator and uniformity of estimates for the
conductivity equation with complex coefficients, arXiv
1406.3873, J London Math Soc 2016 93 (2): 519545 doi: 10.1112/jlms/jdw003
[33] H. Kang, H. Lee and K. Yun, Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions, Math.Annalen 363 (2015), 12811306.
[32] H. Kang, H. Lee and
M. Lim, Construction of conformal mappings by generalized polarization tensors,
Math. Method Appl. Sci., 38 (2015), 18471854.
[31] H. Kang and H. Lee,
Coated inclusions of finite conductivity neutral to multiple fields in two
dimensional conductivity or antiplane elasticity, Euro. J. Appl. Math., 25 (3)
(2014), 329338.
[30] D. Chung, H. Kang, K.
Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses, SIAM J. Appl.
Math. 74 (2014), 16911707.
[29] H. Kang, K. Kim, H.
Lee, X. Li and G.W. Milton, Bounds on the size of an inclusion using the
translation method for twodimensional complex conductivity, SIAM J. Appl.
Math. 74 (2014), 939958.
[28] H. Ammari, Y. Deng, H. Kang and H. Lee, Reconstruction of Inhomogeneous Conductivities via
Generalized Polarization Tensors, Ann. I. H. PoincareAN, 31(2014),
877897.
[27] H. Ammari, G. Ciraolo, H. Kang, H.
Lee, and G.W. Milton, Spectral theory of a NeumannPoincar\'etype operator and
analysis of anomalous localized resonance II, Contemporary Math.,
615(2014), 114.
[26] H. Ammari, H. Kang, H. Lee, M. Lim, and S. Yu, Enhancement of near cloaking for the full Maxwell
equations, SIAM J. Appl. Math., 73 (2013), 20552076.
[25] H. Ammari, H. Kang, H. Lee, and J. Lim, Boundary perturbations
due to the presence of small linear cracks in an elastic body, J. Elasticity
113(1)(2013), 7591.
[24] H. Ammari, H. Kang, K. Kim and H. Lee, Strong convergence of
the solutions of the linear elasticity and uniformity of asymptotic expansions
in the presence of small inclusions, Jour. Diff. Eq., 254 (12) (2013),
44464464.
[23] H. Ammari, G. Ciraolo, H. Kang, H. Lee,
and G.W. Milton, Anomalous localized resonance using a folded geometry in three
dimensions, Proc. R. Soc. A, 469 (2013), 20130048.
[22] H. Ammari, G. Ciraolo, H. Kang, H.
Lee and G.W. Milton, Spectral theory of a NeumannPoincar\'etype
operator and analysis of cloaking due to anomalous localized resonance, Arch.
Rational Mech. Anal., 208 (2013), 667692.
[21] H. Ammari, G. Ciraolo, H. Kang, H.
Lee, and K. Yun, Spectral analysis of the NeumannPoincar\'e
operator and characterization of the gradient blowup, Arch. Rational Mech.
Anal. 208(1) (2013) 275304.
[20] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of
nearcloaking. Part II: the Helmholtz equation, Comm.
Math. Phys., 317(2013), 485502.
[19] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of Near
Cloaking Using Generalized Polarization Tensors Vanishing Structures. Part I:
The Conductivity Problem, Comm. Math. Phys.,
317(2013), 253266.
[18] H. Ammari, P. Garapon, H. Kang, and
H. Lee, Effective Viscosity Properties of Dilute Suspensions of Arbitrarily
Shaped Particles, Asymptotic Analysis 80(2012), 189211.
[17] H. Ammari, J. Garnier, V. Jugnon, H. Kang, H. Lee, and M. Lim, Enhancement of
nearcloaking. Part III: Numerical simulations, statistical stability, and
related questions, Contemporary Math. 577, 124.
[16] H. Ammari, K. Kalimeris, H. Kang,
and H. Lee, Layer Potential Techniques for the Narrow Escape Problem, Journal
de Mathematiques Pures et
Appliquees,97 (2012), 6684 .
[15] H. Ammari, L. Guadarrama Bustos, H.
Kang, and H. Lee, Transient Elasticity Imaging and Time Reversal, Royal Soc. Edin. Proc. A, 141 (2011), 11211140.
[14] H. Ammari, J. Garnier, H. Kang, H.
Lee, and K. Solna, The mean escape time for a narrow
escape problem with multiple switching gates, SIAM Multi. Model. Simul. 9
(2011), 817833.
[13] H. Ammari, Y. Capdeboscq, H. Kang,
H. Lee, G. W. Milton, and H. Zribi, Progress on the
strong Eshelby's Conjecture and Extremal Structures
for the Elastic Moment Tensor, J. Math. Pures Appl. 94(2010)
93106
[12] H. Ammari, H. Kang, H. Lee, and W.K. Park, Asymptotic Imaging
of Perfectly Conducting Cracks, SIAM J. Sci. Comput.,
32(2), 894922.
[11] H. Ammari, H. Kang, H. Lee, M. Lim, and H. Zribi,
Decomposition Theorems and Fine Estimates for Electrical Fields in the Presence
of Closely Located Circular Inclusions, J. Diff. Equat.
247 (2009) 28972912.
[10] H. Ammari, H. Kang, and H. Lee, Asymptotic Analysis of
HighContrast Phononic Crystals and a Criterion for
the BandGap Opening, Arch. Rational Mech. Anal. 193 (2009), 679714.
[9] H. Lee and W.K. Park,
Location search algorithm of thin conductivity inclusion
via boundary measurements, Mathematical Methods for Imaging and
Inverse Problems, ESAIM:Proceedings, Vol. 26(2009),
217229.
[8] H. Ammari,
H. Kang, E. Kim, and H. Lee, Vibration testing for anomaly detection, Math.
Meth. Appl. Sci. 32(2009), 863874.
[7] H. Ammari,
H. Kang, E. Kim, H. Lee, and K. Louati, Vibration
analysis for detecting internal corrosion, Stud. Appl. Math., 122(1) (2009),
85104.
[6] H. Ammari,
P. Garapon, H. Kang, and H. Lee, A Method of Biological Tissues Elasticity Reconstruction
Using Magnetic Resonance Elastography Measurements,
Quarterly of Applied Mathematics 66 (2008), 139175.
[5] H. Ammari,
H. Kang, and H. Lee, Asymptotic Expansions for Eigenvalues of the Lam\'{e}
System in the Presence of Small Inclusions, Comm. Part. Diff. Eq. 32(2007),
17151736.
[4] H. Ammari,
H. Kang, H. Lee, J. Lee, and M. Lim, Optimal Estimates for the Electrical Field
in Two Dimensions, J. Math. Pures Appl. 88(2007),
307324
[3] H. Ammari,
H. Kang, and H. Lee, A Boundary Integral Method for Computing Elastic Moment
Tensors for Ellipses and Ellipsoids, J. Comp. Math. 251(2007), 212.
[2] H. Kang and H. Lee,
Simple Poles via Boundary Measurements and an Application to EIT, Inverse
Problems, 20(2004), 18531863.
[1] H. Lee, Two spectral problems arising from the linear elasticity,
Thesis, Seoul National University, August 2006.