2016학년도 1학기 수학전공 Colloquium

제 목 Iwasawa theory and the Tate-Shafarevich group 연 사 서수길(연세대)

For a number field k and odd prime p, we investigate the gap between the condition for a finite cyclic p-extension K/k to be \mathbb{Z}_p -extendable and the condition $\mathbb{Z}\left[K:k|p^r\mathbb{Z}\text{-extendable for all }r\geq 0$ where the second condition is said to be cyclic p^{∞} -extendable in this paper.

For the Galois group G_S of the maximal p^∞ -ramified extension of k and the p^r th roots μ_{p^r} of unity, we describe the Shafarevich-Tate group $\coprod^1(G_S,\mu_{p^r})$ as the quotient of two subgroups of the idele group of k such that the numerator is connected to the condition of \mathbb{Z}_p -extendable and the denominator to the condition of cyclic p^∞ -extendable.

초 록

For a number field k, the Leopoldt conjecture for (k,p) can be shown to be equivalent to $\left\{|\coprod^1 \left(G_S,\mu_{p^r}\right)|\right\}_{r\in N}<\infty$, and for almost all odd primes p, we show under the Leopoldt conjecture that the small-est integer p^s which makes the sequence $\left\{|\coprod^1 \left(G_S,\ \mu_{p^r}\right)|\right\}_{p^r\geq p^s}$ constant is equal to the exponent of the torsion subgroup of the maximal p-subgroup of the abelianize-tion G_S^{ab} of G_S . In this case, we can evaluate explicitly the residue $res_{s=1}\zeta_p(k,s)$ of the p-adic zeta function $\zeta_p(k,s)$ at s=1 when k is totally real.

일 시 5월 11일 수요일 5시

장 소 5E102