Publications




Preprint

  1. K. Ando, H. Kang and Y. Miyanishi, Convergence rate for eigenvalues of the elastic Neumann-Poincaré operator on smooth and real analytic boundaries in two dimensions, arXiv:1903.07084.
  2. J. A. Carrillo and Y.-P. Choi, Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, arXiv:1901.07204.
  3. H. Kang and K. Yun, Quantitative analysis of field enhancement due to presence of an emitter in a bow-tie structure, arXiv:1811.01530.
  4. K. Ando, Y. Ji, H. Kang, D. Kawagoe and Y. Miyanishi, Spectral structure of the Neumann-Poincaré operator on tori, arXiv:1810.09693.
  5. H. Kang, X. Li, and S. Sakaguchi, Existence of coated inclusions of general shape weakly neutral to multiple fields in two dimensions, arXiv:1808.01096.
  6. Y.-P. Choi, D. Kalise, J. Peszek, and A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, arXiv:1807.05177.
  7. Y.-P. Choi, S.-Y. Ha, Q. Xiao, and Y. Zhang, Asymptotic stability of the phase-homogeneous solution to the Kuramoto-Sakaguchi equation with inertia, arXiv:1806.04953.
  8. H. Kang and D. Kawagoe, Surface Riesz transforms and spectral property of elastic Neumann-Poincaé operators on less smooth domains in three dimensions, arXiv:1806.02026.
  9. Y.-P. Choi, S.-Y. Ha, J. Jung, and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system.
  10. Y.-P. Choi and S.-B. Yun, Global existence of weak solutions for Navier-Stokes-BGK system, arXiv:1801.08283.
  11. H. Ammari, B. Fitzpatrick, H. Lee, S. Yu and H. Zhang, Double-negative acoustic metamaterials, arXiv:1709.08177.
  12. H. Kang and S. Yu, A proof of the Flaherty-Keller formula on the effective property of densely packed elastic composites, arXiv:1707.02205.


Accepted

  1. Y.-P. Choi and J. Jung, Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity, Proceedings of HYP2018.
  2. Y. Ji and H. Kang, A concavity condition for existence of a negative Neumann-Poincaré eigenvalue in three dimensions, Proc. Amer. Math. Soc.
  3. K. Ando, H. Kang, Y. Miyanishi and E. Ushikoshi, The first Hadamard variation of Neumann-Poincaré eigenvalues on the sphere, Proc. Amer. Math. Soc.


Published

  1. Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker-Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., Vol. 51, No. 3, (2019), 2660-2685.
  2. J. A. Carrillo, Y.-P. Choi, and S. Salem, Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off, Commun. Contemp. Math., Vol. 21, No. 4, 1850039 (2019).
  3. Y.-P. Choi, S.-Y. Ha, J. Jung, and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluid, Nonlinearity, Vol. 32, No. 5, (2019), 1579-1640.
  4. H. Ammari, H. Lee and H. Zhang, Bloch waves in bubbly crystal near the first band gap: a high-frequency homogenization approach, SIAM J. Math. Anal., Vol. 51, No. 1, (2019), 45-59.
  5. K. Ando, H. Kang, Y. Miyanishi and E. Ushikoshi, The first Hadamard variation of Neumann-Poincaré eigenvalues on the sphere, Proc. Amer. Math. Soc., Vol. 147, (2019), 1073-1080.
  6. H. Kang and X. Li, Construction of weakly neutral inclusions of general shape by imperfect interfaces, SIAM J. Appl. Math., Vol. 79, (2019), 396-414.
  7. H. Kang and S. Yu, Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticity, Arch. Ration. Mech. Anal., Vol. 232, (2019), 121-196.
  8. H. Kang and K. Yun, Optimal estimates of the field enhancement in presence of a bow-tie structure of perfectly conducting inclusions in two dimensions, J. Differential Equations, Vol. 266, (2019), 5064-5094.
  9. Y.-P. Choi and S. Salem, Cucker-Smale flocking particles with multiplicative noises: stochastic mean-field limit and phase transition, Kinet. Relat. Models, Vol. 12, No. 3, (2019), 573-592.
  10. Y.-P. Choi and S. Salem, Collective behavior models with vision geometrical constraints: truncated noises and propagation of chaos, J. Differential Equations, Vol. 266, No. 9, (2019), 6109-6148.
  11. J. A. Carrillo, Y.-P. Choi, and O. Tse, Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces, Comm. Math. Phys., Vol. 365, No. 1, (2019), 329-361.
  12. Y.-P. Choi and Z. Li, Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings, Nonlinearity, Vol. 32, No. 2, (2019), 559-583.
  13. J. A. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc., Vol. 21, No. 1, (2019), 121-161.
  14. J. A. Carrillo, Y.-P. Choi, and L. Pareschi, Structure preserving schemes for the continuum Kuramoto model: phase transitions, J. Comput. Phys., Vol. 376, No. 1, (2019), 365-389.
  15. S. S. Yoo, W. K. Liu, and D. W. Kim, Variational Boundary Integral Approach for Asymmetric Impinging Jets of Arbitrary Two-dimensional Nozzle, Int. J. Numer. Methods Fluids, Vol. 88, (2018), 193-216.
  16. G. Albi, Y.-P. Choi, and A.-S. Häck, Pressureless Euler alignment system with control, Math. Models Methods Appl. Sci., Vol. 28, No. 09, (2018), 1635-1664.
  17. Y.-P. Choi, S.-Y. Ha, and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, Vol. 13, No. 3, (2018), 379-407.
  18. Y.-P. Choi, S.-Y. Ha, and J. Morales, Emergent dynamics of the Kuramoto ensemble under the effect of inertia, Discrete Contin. Dyn. Syst., Vol. 38, No. 10, (2018), 4875-4913.
  19. M. Campos Pinto, J. A. Carrillo, F. Charles, and Y.-P. Choi, Convergence of a linearly transformed particle method for aggregation equations, Numer. Math., Vol. 139, No. 4, (2018), 743-793.
  20. J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse, An analytical framework for a consensus-based global optimization method, Math. Models Methods Appl. Sci., Vol. 28, No. 06, (2018) 1037-1066.
  21. Y.-P. Choi and S. Salem, Propagation of chaos for aggregation equations with no-flux boundary conditions and sharp sensing zones, Math. Models Methods Appl. Sci., Vo. 28, No. 2 (2018) 223-258.
  22. J. Jo, H.-K. Kim, and D. W. Kim, Electric Fields Computations Using Axial Green Function Method on Refined Axial Lines, IEEE Transactions on Magnetics, Vol. 54, Issue 3, (2017).